首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101255篇
  免费   17693篇
  国内免费   9942篇
化学   68702篇
晶体学   1134篇
力学   6763篇
综合类   535篇
数学   11862篇
物理学   39894篇
  2024年   101篇
  2023年   2065篇
  2022年   2152篇
  2021年   3236篇
  2020年   4198篇
  2019年   4051篇
  2018年   3430篇
  2017年   3163篇
  2016年   5020篇
  2015年   4714篇
  2014年   5786篇
  2013年   7542篇
  2012年   9250篇
  2011年   9762篇
  2010年   6446篇
  2009年   6158篇
  2008年   6540篇
  2007年   6000篇
  2006年   5490篇
  2005年   4600篇
  2004年   3392篇
  2003年   2628篇
  2002年   2239篇
  2001年   1898篇
  2000年   1651篇
  1999年   1967篇
  1998年   1784篇
  1997年   1657篇
  1996年   1807篇
  1995年   1487篇
  1994年   1448篇
  1993年   1155篇
  1992年   1059篇
  1991年   982篇
  1990年   790篇
  1989年   564篇
  1988年   461篇
  1987年   379篇
  1986年   372篇
  1985年   318篇
  1984年   240篇
  1983年   154篇
  1982年   139篇
  1981年   106篇
  1980年   76篇
  1979年   43篇
  1978年   34篇
  1976年   36篇
  1975年   33篇
  1974年   45篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Controllably synthesizing well-dispersed covalent organic frameworks (COFs) with uniform both morphology and size is still a challenge. Herein, we report the template-directed synthesis of COFTTA-DHTA-based core-shell hybrids under solvothermal conditions by using amino-functionalized SiO2 microspheres as templates coupled with stepwise addition of initial monomer molecules. The modified amino groups on the surfaces of SiO2 templates play an important role in the formation of well-defined NH2-f-SiO2@COFTTA-DHTA core-shell hybrids. COFTTA-DHTA hollow spheres can be obtained by etching SiO2 cores of NH2-f-SiO2@COFTTA-DHTA. Both the NH2-f-SiO2@COFTTA-DHTA and COFTTA-DHTA hollow spheres possess the well-defined morphology, high crystallinity and porosity, excellent dispersion property and high chemical stability. The template synthesis method demonstrated in this work provides a general method for the shape-controlled synthesis of COF-based materials, which is important for the further applications in the fields such as energy storage, drug delivery and catalysis.  相似文献   
992.
Two novel tetra-armed conjugated microporous polymers with different geometries have been designed and synthesized via Suzuki-Miyaura cross coupling polycondensation. Both polymers are stable in various organic solvents tested and are thermally stable. The pyrene-containing polymer of PrPy with the rigid pyrene unit shows a higher Brunauer-Emmet-Teller specific surface area of 1219 m2 g?1 than the tetraphenylethylene-containing polymer of PrTPE (770 m2 g?1), which leads to a high CO2 uptake ability of 3.89 mmol g?1 at 1.13 bar/273 K and a H2 uptake ability of 1.69 wt% at 1.13 bar/77 K. The photocatalytic hydrogen production experiments revealed that PrPy also shows a better photocatalytic performance than PrTPE due to the higher conjugation degree and planar structure, the broader UV-visible (UV-Vis) absorption, the lower photoluminescence lifetime, and the higher specific surface area.  相似文献   
993.
Three isostructural three-dimensional(3D) lanthanide-based metal-organic frameworks [Ln_2L(H_2L)(NMP)_2].H_2O(Ln=Sm(1), Eu(2), Gd(3); H_4L=1,1′:4′,1″-terphenyl-2′,4,4″,5′-tetracarboxylic acid; NMP=N-methyl-2-pyrrolidone) have been synthesized and structurally characterized. In 1–3, two Ln3+ ions are doubly-bridged by two oxygen atoms of two carboxylate groups to form the dinuclear Ln_2(OCOO–)_2 unit. Each Ln_2(OCOO–)_2 unit links with four H_2L~(2-) ligands and four L4. ligands to lead to the 3D framework,which can be rationalized as a new trinodal 4,4,8-connected(44.62)(45.6)(412.616) topological network by considering the dinuclear Ln_2(OCOO–)_2 units as 8-connected nodes and L~4./H_2L~(2-) ligands as planar 4-connected nodes, respectively. 1 and 3 exhibit blue emission originated from the ligand with the emission maximum at 384 nm, while 2 shows intense characteristic red emission of Eu~(3+) ions and weak ligand-centered emission. Moreover, 2 has fluorescent quenching response towards the aromatic nitro compounds, especially for the 3,4-dinitrotoluene(3,4-DNT) with the linear Stern-Volmer relationship in the concentration range of 0–1 mM and the quenching constant(Ksv) of 2.084×10~3 M~(-1).  相似文献   
994.
The X-ray absorption fine structure (XAFS) technology has exhibited a very unique application in the study of sorption mechanism, chemical species and microstructures of radionuclides at the natural solid-water interfaces. In this review, the interaction mechanism of radionuclides with clay minerals and nanomaterials under different environmental conditions are summarized from the XAFS spectroscopy analysis. The coordination number and the bond distances of radionuclides, the oxidation-reduction reactions, the influence of humic substances and microorganisms on the species and structures of radionuclides at molecule level are reviewed and compared. This review is helpful to understand the interactions of radionuclides with oxides, natural clay minerals and nanomaterials, which is also crucial to evaluate the physicochemical behaviors of radionuclides in the natural environment.  相似文献   
995.
Metalloproteins have inspired chemists for many years to synthesize artificial catalysts that mimic native enzymes.As a complementary approach to studying native enzymes or making synthetic models,biosynthetic approach using small and stable proteins to model native enzymes has offered advantages of incorporating non-covalent secondary sphere interactions under physiological conditions.However,most biosynthetic models are restricted to natural amino acids.To overcome this limitation,incorporating unnatural amino acids into the biosynthetic models has shown promises.In this review,we summarize first synthetic,semisynthetic and biological methods of incorporates unnatural amino acids(UAAs)into proteins,followed by progress made in incorporating UAAs into both native metalloproteins and their biosynthetic models to fine-tune functional properties beyond native enzymes or their variants containing natural amino acids,such as reduction potentials of azurin,O_2 reduction rates and percentages of product formation of HCO models in Mb,the rate of radical transport in ribonucleotide reductase(RNR)and the proton and electron transfer pathways in photosystemⅡ(PSⅡ).We also discuss how this endeavour has allowed systematic investigations of precise roles of conserved residues in metalloproteins,such as Metl21 in azurin,Tyr244 that is cross-linked to one of the three His ligands to CuB in HCO,Tyr122,356,730 and 731 in RNR and TyrZ in PSⅡ.These examples have demonstrated that incorporating UAAs has provided a new dimension in our efforts to mimic native enzymes and in providing deeper insights into structural features responsible high enzymatic activity and reaction mechanisms,making it possible to design highly efficient artificial catalysts with similar or even higher activity than native enzymes.  相似文献   
996.
Polymer electron acceptors are the key materials in all-polymer solar cells(all-PSCs).In this review,we focused on introducing the principle of boron-nitrogen coordination bond(B←N),and summarizing our recent research on polymer electron acceptors containing B←N unit for efficient all-PSC devices.Two approaches have been reported to design polymer electron acceptors using B←N unit.One is to replace a C-C unit by a B←N unit in conjugated polymers to transform a polymer electron donor to a polymer electron acceptor.The other approach is to construct novel electron-deficient building block based on B←N unit for polymer electron acceptors.The polymer electron acceptors containing B←N unit showed tunable lowest unoccupied molecular orbital(LUMO) energy levels and exhibited excellent all-PSC device performance with power conversion efficiency of exceeding6%.These results indicate that organic boron chemistry is a new toolbox to develop functional polymer materials for optoelectronic device applications.  相似文献   
997.
Electrochemical reduction of CO2 provides a sustainable solution to address the intermittent renewable electricity storage while recycling CO2 to produce fuels and chemicals. Highly efficient catalytic materials and reaction systems are required to drive this process economically. This Review highlights the new trends in advancing the electrochemical reduction of CO2 by developing and designing nanostructured heterogeneous catalysts. The activity, selectivity and reaction mechanism are significantly affected by the nano effects in nanostructured heterogeneous catalysts. In the future, energy efficiency and current density in electrochemical reduction of CO2 need to be further improved to meet the requirements for practical applications.  相似文献   
998.
999.
1000.
In this study, MoS2 nanosheets were first prepared by exfoliating its bulk material in HCl/LiNO3 solution with a yield of 45%, and then a facile strategy was developed to synthesize polyaniline/MoS2 (PANI/MoS2) nanocomposite via in situ polymerization. Structural and morphological characterizations of MoS2 nanosheets and the nanocomposite were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray powder diffraction. The results of SEM illustrated that orderly sawtooth polyaniline (PANI) nanoarrays were formed on the surface of MoS2 nanosheets. The nanocomposite displayed good electrochemical performance as a supercapacitor electrode material. The specific capacitance reached 560 F/g at a current density of 1.0 A g?1 in 1.0 M H2SO4 solution. Such good performance is because that the MoS2 nanosheets provided a highly electrolytic accessible surface area for redox-active PANI and a direct path for electrons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号